2012 Revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides

Jennette JC, Falk RJ, Bacon PA, Basu N, Cid MC, Ferrario F, Flores-Suarez LF, Gross WL,
Guillevin L, Hagen EC, Hoffman GS, Jayne DR, Kallenberg CGM, Lamprecht P, Langford
CA, Luqmani RA, Mahr AD, Matteson EL, Merkel PA, Ozen S, Pusey CD, Rasmussen N,

Running Head: Nomenclature of Vasculitides

Corresponding Author:
J. Charles Jennette, MD
Brinkhous Distinguished Professor and Chair
Department of Pathology and Laboratory Medicine
University of North Carolina at Chapel Hill
Chapel Hill, NC 27599
Phone: 919-966-4676, E-mail: jcj@med.unc.edu

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as an ‘Accepted Article’, doi: 10.1002/art.37715
© 2012 American College of Rheumatology
Received: May 29, 2012; Revised: Jul 16, 2012; Accepted: Sep 18, 2012
Introduction

The goals of the first International Chapel Hill Consensus Conference on the Nomenclature of Systemic Vasculitides (CHCC1994) were to reach consensus on names for the most common forms of vasculitis and to construct specific definitions for each (1). An effort was made to adopt names and definitions that were already widely accepted. Because of advances in our understanding of vasculitis, another International Chapel Hill Consensus Conference (CHCC2012) was convened to improve the CHCC1994 nomenclature, change names and definitions as appropriate, and add important categories of vasculitis that were not included in CHCC1994. As in the original CHCC, the emphasis was on making changes only when justified. Here we report the CHCC2012 revised nomenclature for vasculitides.

CHCC is a nomenclature system (nosology) and neither a classification system that specifies what findings must be observed in a specific patient to classify that patient for clinical research nor a diagnostic system that directs clinical management (Table 1). A disease nomenclature system specifies the name that should be used for a specifically defined disease process. A nomenclature system is constructed based on the state of knowledge at the time it is developed, and specifies the name that should be used when a patient fulfills a definition. A nomenclature system differs fundamentally from categorization systems that use identifiable classification criteria or diagnostic criteria to decide what disease definition is fulfilled by an actual patient. The name and definition of a disease are a given (i.e. specified
in an accepted nomenclature system), whereas diagnostic criteria and classification criteria are features that can be observed in a patient so that the presence of the disease can be inferred from this evidence. CHCC2012 nomenclature and definitions do not provide diagnostic and classification criteria, but provide a framework for inferring and rigorously verifying such criteria.

The distinction between definitions versus diagnostic or classification criteria must be clear in order to understand that histopathologic terms used in definitions do not mean that a diagnosis of the disease can only be made if the pathologic process is directly observed histologically in a tissue specimen (Table 1). For example, clinically apparent mononeuritis multiplex can be a diagnostic or classification criterion for vasculitis affecting peripheral nerves without the need for a nerve biopsy to observe the vasculitis histologically. Likewise, in the appropriate clinical context cavitary lung lesions documented by imaging studies can be a sufficient surrogate criterion to conclude that a patient has necrotizing granulomatous pulmonary inflammation even if tissue has not been examined histologically.

As in many other settings, the use of eponyms is being phased out in the nomenclature of vasculitides. The use of each vasculitis eponym was carefully and vigorously deliberated to determine if a non-eponymous replacement term was suitable. The participants took into account that existing eponyms have value in the categorization of vasculitides and should not be replaced with nonspecific descriptive terms that lack
pathophysiological specificity. In general, eponyms were retained if there was inadequate understanding of the pathophysiology to propose an alternative name.

Most names for diseases are not sufficient literal descriptions but are idioms that require a deeper understanding of the meaning than is provided in the words alone. When descriptive terms are used in names, it is important to realize that these are convenient idiomatic expressions that refer to some distinctive feature of the disease, but the definition must be consulted for a detailed and specific description of the disease. For example, the term “giant cell arteritis”, if taken literally, could be applied to multiple different forms of vasculitis that have giant cells in the inflammation; however, the definition of giant cell arteritis restricts the name to a single distinct category of vasculitis.

Methods

A modified Nominal Group Technique with J. C. Jennette as moderator was used.

The 28 participants from 12 countries had recognized expertise in vasculitis from multiple subspecialty perspectives, including internal medicine, nephrology, otolaryngology, pathology, pulmonology, and rheumatology; and included expertise in pediatric and adult disease. For three months prior to the May 2011 Chapel Hill meeting, ideas and proposals were deliberated in group e-mails received by all participants, and were discussed, clarified and modified based on e-mail input from all participants. Priority was given to establishing definitions before coming to consensus on names. As the consensus evolved, each name and
definition was voted on at least once by every member of the group. During the face-to-face meeting in Chapel Hill in May 2011, the group agreed that >80% consensus was required to make a change in the CHCC1994 names and definitions, or to add a new name or definition.

The initial proposals considered in Chapel Hill were those that had reached >50% agreement in e-mail responses prior to the Chapel Hill meeting. The Chapel Hill meeting focused primarily on definitions rather than names, and all definitions that were adopted received >80% agreement by a show of hands. Decisions about the remaining definitions and names were made through on-line deliberations for five months after the meeting. Each change or addition in a name or definition that arose from the group deliberations was posed to the group for a vote, followed by an additional two week on-line discussion period, and then a vote by all members. Votes were sent to the moderator and copied to all participants.

Propositions that received >80% agreement (i.e. 23 on more votes) were adopted.

Propositions that received <80% agreement were not adopted.

Major Vasculitis Categories

Vasculitis is inflammation of blood vessel walls. A shared defining feature of all categories of vasculitis is inflammation of vessel walls, at least at some point during the course of the disease. Some categories of vasculitis also have characteristic tissue injury unrelated to the vasculitis. Features that vary among different forms of vasculitis that can be used for categorization include etiology, pathogenesis, type of vessel affected, type of
inflammation, favored organ distribution, clinical manifestations, genetic predispositions and distinctive demographic characteristics (e.g. with respect to age, sex, race, ethnicity, and geographic distribution). Disease categorization based on etiology is often a preferred approach; however, this is not feasible for most vasculitides because the etiology is unknown. Thus, CHCC subdivides vasculitides based on combinations of features that separate different form of vasculitis into definable categories.

A broad dichotomy of vasculitides is into infectious vasculitis known to be caused by direct invasion and proliferation of pathogens in vessel walls with resultant inflammation, versus noninfectious vasculitis not known to be caused by direct vessel wall invasion by pathogens. Examples of infectious vasculitis include rickettsial vasculitis, syphilitic aortitis, and Aspergillus arteritis. CHCC deals only with vasculitis that is not known to be caused by invasion of vessel walls by pathogens. Infections are indirectly involved in the pathogenesis of some of the CHCC vasculitides. One of many examples is cryoglobulinemic vasculitis caused by an autoimmune response initiated by hepatitis C virus infection.

CHCC categorizes noninfectious vasculitis by integrating knowledge about etiology, pathogenesis, pathology, demographics and clinical manifestations. The first categorization level is based on the predominant type of vessels involved; i.e. large vessel vasculitis (LVV), medium vessel vasculitis (MVV), and small vessel vasculitis (SVV) (Table 2 and 3, Figure 1 and 2). These terms refer to vessels that differ not only in size, but also in structural and
functional attributes. Differences among these categories of vessels correlate with function
and susceptibility to specific variants of vasculitis. There are further distinctions within each
vessel type, for example, capillaries in different organs (e.g. in brain, kidney and lung) and
different segments of the aorta (e.g. arch, thoracic, abdominal) have different biochemical
and functional properties that make them vulnerable to different pathogenic mechanisms.

LVV affects large arteries more often than MVV or SVV, MVV affects predominantly
medium arteries, and SVV affects predominantly small arteries and other small vessels, but
an important concept is that all three major categories can affect any size artery. It is very
important to realize that MVV and even LVV can affect small arteries.

Large Vessel Vasculitis (LVV)

LVV is vasculitis affecting large arteries more often than other vasculitides.

Takayasu arteritis (TAK) and giant cell arteritis (GCA) are the two major variants.

By the CHCC2012 definitions, all of the vessels shown in Figure 1A are large
vessels except the most distal branches, which are medium vessels. All vessels not shown
in Figure 1A are medium vessels or small vessels (not large vessels). No “large vessels” are
inside organs including muscles, nerves, kidney and skin.

Even though LVV affects large arteries much more often than any other categories of
vasculitis, in a specific patient, large arteries may not be the predominant type of vessel
affected because for every large artery that is affected there may be many smaller branches
affected (especially medium arteries). How often this is the case is not known. For example, imaging studies and fluorescein angiography have shown that ocular involvement by GCA may involve not only ophthalmic arteries, but also retinal arteries and multiple ciliary arteries (medium arteries), and even smaller branches of the ciliary and retinal arteries (small arteries) (2). Large artery injury may not be the cause of the most significant morbidity, as when blindness is due to injury to smaller branches of the ophthalmic arteries.

The histopathologic features of TAK and GCA are indistinguishable. Both TAK and GCA occur predominantly in females. The age at onset has been used by many but not all investigators to distinguish between GCA and TAK. Some have suggested that they are the same disease. This argument remains unsettled and CHCC 2012 participants did not seek to resolve this important question. Lacking definitive evidence of shared causality, we have retained prior guidelines that consider TAK to be a disease predominantly of younger individuals and GCA to be a disease predominantly of older individuals (3-5).

Takayasu Arteritis (TAK) is arteritis, often granulomatous, predominantly affecting the aorta and/or its major branches. Onset usually is in patients younger than 50 years old, which is a major distinction from giant cell arteritis, which usually has onset after age 50 years. As for all eponyms, there was considerable deliberation about whether to retain the eponym Takayasu, or replace it with a non-eponymous term such as early onset granulomatous aortitis/arteritis. The consensus was that, for now, this eponym is more
effective than any alternative that was proposed.

Giant Cell Arteritis (GCA) is arteritis, often granulomatous, usually affecting the aorta and/or its major branches, with a predilection for the branches of the carotid and vertebral arteries. Giant cells are frequently but not always observed in specimens from patients with active GCA. The term temporal arteritis is not a suitable alternative for GCA because not all patients have temporal artery involvement, and other categories of vasculitis can affect the temporal arteries.

Medium Vessel Vasculitis (MVV)

MVV is vasculitis predominantly affecting medium arteries defined as the main visceral arteries and their branches. Any size artery may be affected. Polyarteritis nodosa and Kawasaki disease are the major variants. The onset of inflammation in MVV is more acute and necrotizing than the onset of inflammation in LVV.

Polyarteritis Nodosa (PAN) is necrotizing arteritis of medium or small arteries without glomerulonephritis or vasculitis in arterioles, capillaries, or venules; and not associated with anti-neutrophil cytoplasmic autoantibodies (ANCA). In CHCC2012, specifying that ANCA are not associated with PAN and the addition of a category for ANCA-associated vasculitis (AAV) reflect advances in knowledge about ANCA since CHCC1994 (6,7). Although the role of ANCA in the pathogenesis of vasculitis has not been fully elucidated, many studies have confirmed that ANCA are a reliable marker for a
clinically and pathologically distinct category of small vessel vasculitis (6), and that they are typically absent in patients with PAN (7). This is a useful discriminator, because PAN and AAV can have clinically and pathologically indistinguishable necrotizing arteritis of medium and small arteries.

Kawasaki Disease (KD) is arteritis associated with the mucocutaneous lymph node syndrome and predominantly affecting medium and small arteries. Coronary arteries are often involved. Aorta and large arteries may be involved. KD usually occurs in infants and young children. As with TAK, the consensus was that, for now, this eponym is more effective than any alternative that was proposed, such as mucocutaneous lymph node syndrome arteritis.

Small Vessel Vasculitis (SVV)

SVV is vasculitis predominantly affecting small vessels, defined as small intraparenchymal arteries, arterioles, capillaries and venules. Medium arteries and veins may be affected. In essence, all intraparenchymal vessels are small vessels with the exception of the initial penetrating branches of medium arteries (Fig 1B). Small biopsies of tissues usually contain only small vessels, thus even the largest arteries in such specimens are small arteries. The two categories of SVV are characterized by a paucity of vessel wall immunoglobulin in one, and a prominence of vessel wall immunoglobulin in the other.

ANCA-Associated Vasculitis (AAV) is necrotizing vasculitis, with few or no immune deposits, predominantly affecting small vessels (i.e., capillaries, venules, arterioles
and small arteries), associated with ANCA specific for myeloperoxidase (MPO-ANCA) or proteinase 3 (PR3-ANCA). A prefix should be added to the name to indicate ANCA reactivity, e.g. PR3-ANCA, MPO-ANCA, or ANCA-negative. Additional prefixes might become appropriate in the future if new clinically important ANCA specificities are discovered.

ANCA-negative AAV is analogous to seronegative lupus or seronegative rheumatoid arthritis, and is used in patients who otherwise fulfill the definition for an AAV but have negative serologic testing for ANCA. Patients with ANCA-negative AAV may have ANCA that cannot be detected with current methods, may have ANCA with as yet undiscovered specificity, or may have pathogenic mechanisms that do not involve ANCA at all.

The few or no immune deposits in vessel walls that is characteristic for AAV differs from the moderate to marked vessel wall immune deposits that are characteristic for immune complex SVV. Although there are conceptual and practical difficulties in precisely establishing the break point, less versus more immune deposits distinguished between AAV with less immune deposits in vessel walls and immune complex SVV with more immune deposits in vessel walls. Although antibodies binding to antigens appear to be major initiator of pathogenic effector mechanisms in both categories of vasculitis, the exact mechanisms have not been fully elucidated.

The major clinicopathologic variants of AAV are microscopic polyangiitis, granulomatosis with polyangiitis (Wegener’s), eosinophilic granulomatosis with polyangiitis...
(Churg-Strauss), and single organ AAV, for example renal limited AAV.

Microscopic Polyangiitis (MPA) is necrotizing vasculitis, with few or no immune deposits, predominantly affecting small vessels (i.e., capillaries, venules, or arterioles). Necrotizing arteritis involving small and medium arteries may be present. Necrotizing glomerulonephritis is very common. Pulmonary capillaritis often occurs. Inflammation that is not centered on vessels, including granulomatous inflammation, is absent.

Granulomatosis with Polyangiitis (Wegener’s) (GPA) is necrotizing granulomatous inflammation usually involving the upper and lower respiratory tract, and necrotizing vasculitis affecting predominantly small to medium vessels (e.g., capillaries, venules, arterioles, arteries and veins). Necrotizing glomerulonephritis is common. Ocular vasculitis and pulmonary capillaritis with hemorrhage are frequent. Granulomatous and nongranulomatous extravascular inflammation are common.

CHCC2012 adopted the recommendation of the American College of Rheumatology, the American Society of Nephrology, and the European League against Rheumatism to replace “Wegener's granulomatosis” with “Granulomatosis with polyangiitis (Wegener’s)” (8).

Limited expressions of GPA occur, especially disease confined to the upper or lower respiratory tract (9), or the eye. These patients may have no identifiable evidence for systemic vasculitis but when they have clinical and pathologic changes identical to GPA respiratory
tract involvement, and especially if they are ANCA-positive, they should be included in the GPA category.

Eosinophilic Granulomatosis with Polyangiitis (Churg-Strauss) (EGPA) is eosinophil-rich and necrotizing granulomatous inflammation often involving the respiratory tract, and necrotizing vasculitis predominantly affecting small to medium vessels, and associated with asthma and eosinophilia. Nasal polyps are common. ANCA is more frequent when glomerulonephritis is present.

The prominence of eosinophils in the blood and tissue is an essential feature of EGPA and thus is highlighted in the name. The eponym “Churg-Strauss syndrome” was replaced by EGPA in part to achieve nomenclature symmetry with MPA and GPA.

Limited expressions of EGPA confined to the upper or lower respiratory tract may occur. Many patients with otherwise typical EGPA lack glomerulonephritis. Interestingly, only approximately 25% of patients with EGPA who have no renal disease are ANCA-positive, whereas 75% with any renal disease and 100% with documented necrotizing glomerulonephritis have ANCA (10). Granulomatous and nongranulomatous extravascular inflammation are common, such as nongranulomatous eosinophil-rich inflammation of lungs, myocardium and gastrointestinal tract..

Immune Complex SVV is vasculitis with moderate to marked vessel wall deposits of immunoglobulin and/or complement predominantly affecting small vessels (i.e., capillaries,
venules, arterioles and small arteries). Glomerulonephritis is frequent. Arterial involvement is much less frequent in immune complex SVV compared to ANCA SVV.

When appropriate, immune complex vasculitis can be categorized as a Vasculitis Associated with Probable Etiologies (e.g. hepatitis C virus-associated cryoglobulinemic vasculitis) or as a Vasculitis Associated with Systemic Disease (e.g. lupus vasculitis or rheumatoid vasculitis).

Anti-GBM Disease is vasculitis affecting glomerular capillaries, pulmonary capillaries, or both, with basement membrane deposition of anti-basement membrane (anti-GBM) autoantibodies. Lung involvement causes pulmonary hemorrhage, and renal involvement causes glomerulonephritis with necrosis and crescents (11). Anti-GBM disease is a misnomer because anti-GBM antibodies are reactive not only with GBM but also with pulmonary alveolar capillary basement membranes; however, the use of anti-GBM disease is so conventional that the consensus was that this term should be retained. The eponym Goodpasture’s syndrome has been used in the past for combined pulmonary and renal expression of anti-GBM disease.

Anti-GBM disease is grouped as an immune complex disease based on the in situ formation of immune complexes composed of autoantibodies bound to basement membrane in glomerular and pulmonary alveolar capillaries. Although the hemorrhagic pulmonary lesions often lack overt leukocyte infiltration, anti-GBM disease is a vasculitis because
cellular and humoral inflammatory mechanisms are responsible for the injury (11). In addition, necrotizing anti-GBM glomerulonephritis is an overtly inflammatory process affecting glomerular capillaries and, although anti-GBM pulmonary disease often has little or no identifiable leukocyte infiltration, some acute anti-GBM pulmonary hemorrhage has conspicuous neutrophilic inflammation (12).

Cryoglobulinemic Vasculitis is vasculitis with cryoglobulin immune deposits affecting small vessels (predominantly capillaries, venules, or arterioles) and associated with cryoglobulins in serum. Skin, glomeruli and peripheral nerves are often involved. The term “idiopathic” or “essential” may be used as a prefix to indicate that the etiology of cryoglobulinemic vasculitis is unknown. As with other vasculitides, when the etiology is known, this can be designated in the diagnosis, e.g. hepatitis C-associated cryoglobulinemic vasculitis.

IgA Vasculitis (Henoch-Schönlein) (IgAV) is vasculitis with IgA1-dominant immune deposits, affecting small vessels (predominantly capillaries, venules, or arterioles). IgAV often involves skin and gastrointestinal tract, and frequently causes arthritis. Glomerulonephritis indistinguishable from IgA nephropathy may occur. Any segment of the gastrointestinal tract can be affected, but small bowel involvement is most common.

The consensus to replace the eponym Henoch-Schönlein purpura with IgAV is based on the compelling body of literature indicating that abnormal IgA deposits in vessel walls are
the defining pathophysiological feature. In patients with either systemic IgAV or renal-limited IgA nephropathy (IgAN), IgA1 in serum and in tissue deposits has reduced terminal glycosylation in the hinge region (13). There also are emerging data suggesting that patients with IgAV and IgAN have circulating abnormally glycosylated IgA1, and possibly glycan-specific IgG antibodies that form IgA1-IgG anti-IgA1 immune complexes (14). IgG antibodies directed against the abnormal glycosylation putatively bind to IgA1 molecules and localize in vessel walls causing inflammation.

As with other vasculitides, IgAV can occur as a single organ vasculitis. Isolated cutaneous IgAV is analogous to IgAN without systemic disease. Patients with renal-limited IgAN or single organ cutaneous IgAV may subsequently develop systemic IgA vasculitis. IgAV can be associated with and possibly caused by other diseases such as liver disease, inflammatory bowel disease and ankylosing spondylitis. The onset of symptomatic IgAV is often associated with an upper respiratory tract or gastrointestinal infection.

Hypocomplementemic Urticarial Vasculitis (HUV) (Anti-C1q Vasculitis) is vasculitis accompanied by urticaria and hypocomplementemia affecting small vessels (i.e., capillaries, venules, or arterioles), and associated with anti-C1q antibodies. Glomerulonephritis, arthritis, obstructive pulmonary disease, and ocular inflammation are common. Anti-C1q antibodies are one of the most distinctive feature of HUV (15,16). Hypocomplementemia, and to a lesser extent urticaria, occur in other immune complex SVV,
such as lupus vasculitis. Consideration was given to recommending the term anti-C1q vasculitis in preference to HUV. Consensus was not reached to recommend this as the primary term but there was agreement that the pathophysiological link between anti-C1q and HUV was strong enough to at least introduce this term in parenthesis with the more conventional term HUV.

Variable Vessel Vasculitis (VVV)

VVV is vasculitis with no predominant type of vessel involved that can affect vessels of any size (small, medium, and large) and type (arteries, veins, and capillaries).

Behçet’s disease and Cogan’s syndrome are the two examples included in CHH2012. They are included as primary categories of vasculitis rather than vasculitis associated with a systemic disease because of the frequency of vasculitis.

Behçet’s Disease (BD) Vasculitis is vasculitis occurring in patients with BD that can affect arteries or veins. Behçet's disease is characterized by recurrent oral and/or genital aphthous ulcers accompanied by cutaneous, ocular, articular, gastrointestinal, and/or central nervous system inflammatory lesions. Small vessel vasculitis, arteritis, arterial aneurysms and venous and arterial thromboangiitis and thrombosis may occur.

Cogan’s Syndrome (CS) Vasculitis is vasculitis occurring in patients with CS, which is characterized by ocular inflammatory lesions, including interstitial keratitis, uveitis, and episcleritis, and inner ear disease, including sensorineural hearing loss and vestibular
dysfunction. Vasculitic manifestations may include arteritis (affecting small, medium or large arteries), aortitis, aortic aneurysms, and aortic and mitral valvulitis. The primary ocular vascular target for inflammation in CS is the small vessels in the vascularized layers of the anterior globe, i.e., from outer to inner: conjunctiva (conjunctivitis), episclera (episcleritis), sclera (scleritis) and uvea (uveitis). Inflamed small blood vessels invade the adjacent normally avascular corneal stroma and cause the very distinctive interstitial keratitis of CS.

Single Organ Vasculitis (SOV)

SOV is vasculitis in arteries or veins of any size in a single organ that has no features that indicate that it is a limited expression of a systemic vasculitis. The involved organ and vessel type should be included in the name (e.g. cutaneous small vessel vasculitis, testicular vasculitis, central nervous system vasculitis). Vasculitis distribution may be unifocal or multifocal (diffuse) within an organ or organ system. Some patients originally diagnosed with SOV will develop additional disease manifestations that warrant reclassifying the vasculitis as one of the systemic vasculitides (e.g. cutaneous arteritis later becoming systemic polyarteritis nodosa).

If the features of a vasculitis that is confined to one organ indicate that it is a limited expression of one of the systemic vasculitides, this vasculitis should be considered a limited expression of that category of vasculitis rather than an independent SOV. Clinical, laboratory, and pathologic features assist in distinguishing SOV from an isolated expression
of systemic vasculitis (17). Concluding that an isolated vasculitis is a limited expression of a systemic vasculitis does not imply that the vasculitis will or will not subsequently evolve into systemic disease.

There is a distinctive form of CNS SOV (primary CNS vasculitis) that is not an isolated expression of a systemic vasculitis (18,19). As with other SOV, a diagnosis of primary CNS vasculitis requires determining that CNS vasculitis is not a component of a systemic vasculitis (e.g. GCA, BD, MPA, GPA, EGPA), caused by infection (e.g. syphilis), or associated with a systemic disease (e.g. lupus, sarcoidosis).

Primarily because there are no specific biomarkers for TAK and GCA, it is not possible to know if any or all examples of SOV aortitis are limited expressions of TAK or GCA. Isolated aortitis can also be associated with an infection (e.g. syphilis) or systemic disease. For example, some patients with IgG4 related systemic disease develop aortitis as the only vasculitic manifestation (20).

Vasculitis Associated with Systemic Disease

Vasculitis can be associated with and may be caused by a systemic disease. The name (diagnosis) should have a prefix term specifying the systemic disease (e.g. rheumatoid vasculitis, lupus vasculitis, sarcoidosis vasculitis, relapsing polychondritis vasculitis, etc.).

This category of vasculitis associated with systemic diseases and the following category associated with probable etiologies often are considered to be *secondary*
vasculitides, whereas the other categories have been considered primary (or idiopathic) vasculitides. Categorization into primary versus secondary vasculitis becomes problematic as more and more etiologies of the former are discovered.

Vasculitis Associated with Probable Etiology

If a vasculitis is associated with a probable specific etiology, the name (diagnosis) should have a prefix specifying the association (e.g. hydralazine-associated microscopic polyangiitis, hepatitis B virus-associated polyarteritis nodosa, hepatitis C virus-associated cryoglobulinemic vasculitis, syphilis-associated aortitis, serum sickness-associated immune complex vasculitis, cancer-associated vasculitis and many others).

Hematologic and solid organ neoplasms, as well as clonal B cell lymphoproliferative disorders and myelodysplastic syndrome, can be associated with and may cause vasculitis.

Epilogue

Disease names and definitions evolve over time as medical knowledge and understanding advance, which is why CHCC2012 is being proposed to replace CHCC1994. The goals are to make this nomenclature system more relevant and more valuable by including additional categories of vasculitis, and by adjusting names and definitions based on current trends in usage and on advances in the understanding of disease manifestations and mechanisms.
REFERENCES

21

14. Suzuki H, et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized

Table 1. Explanation of terminology. The classification criteria and diagnostic criteria in the table are putative examples that are not derived from any validated study. Note that classification criteria and diagnostic criteria do not necessarily require microscopic confirmation of a pathologic process that is a defining feature of a disease (e.g. histologic confirmation of myocardial necrosis is not a required classification or diagnostic criterion for an actionable diagnosis of acute myocardial infarction).

<table>
<thead>
<tr>
<th>Explanation</th>
<th>Example #1</th>
<th>Example #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis</td>
<td>The name of a disease</td>
<td>Acute myocardial infarction</td>
</tr>
<tr>
<td>Definition</td>
<td>Disease processes present in any patient that justify assignment of the diagnosis (name).</td>
<td>Ischemic coagulative necrosis of myocardial tissue</td>
</tr>
<tr>
<td>Classification criteria</td>
<td>Observations that classify a specific patient into a standardized category for study.</td>
<td>Any two of the following: symptoms of myocardial ischemia, rise/fall of cardiac troponin, ECG changes indicative of new ischemia, or</td>
</tr>
<tr>
<td>Diagnostic criteria</td>
<td>Observations that demonstrate or confidently predict the presence of the defining features of the disease in a specific patient.</td>
<td>Any two of the following: symptoms of myocardial ischemia, rise/fall of cardiac troponin, ECG changes indicative of new ischemia, or imaging evidence of new loss of viable myocardium.</td>
</tr>
</tbody>
</table>

MCLNS=mucocutaneous lymph node syndrome
Table 2: Names for Vasculitides Adopted by the 2011-2012 International Chapel Hill Consensus Conference Nomenclature of the Vasculitides

Large Vessel Vasculitis (LVV)
- Takayasu Arteritis (TAK)
- Giant Cell Arteritis (GCA)

Medium Vessel Vasculitis (MVV)
- Polyarteritis Nodosa (PAN)
- Kawasaki Disease (KD)

Small Vessel Vasculitis (SVV)
- ANCA-Associated Vasculitis (AAV)
 - *Microscopic Polyangiitis (MPA)*
 - *Granulomatosis with Polyangiitis (Wegener's) (GPA)*
 - *Eosinophilic Granulomatosis with Polyangiitis (Churg Strauss) (EGPA)*
- Immune Complex SVV
 - *Anti-GBM Disease*
- *Cryoglobulinemic Vasculitis (CV)*
- *IgA Vasculitis (Henoch-Schönlein)(IgAV)*
 - *Hypocomplementemic Urticarial Vasculitis (Anti-C1q Vasculitis)*

Variable Vessel Vasculitis (VVV)
Behçet’s Disease (BD)
Cogan’s Syndrome (CS)

Single Organ Vasculitis (SOV)
Cutaneous Leukocytoclastic Angiitis
Cutaneous Arteritis
Primary CNS Vasculitis
Isolated Aortitis

Others

Vasculitis Associated with Systemic Disease
Lupus Vasculitis
Rheumatoid Vasculitis
Sarcoid Vasculitis

Others

Vasculitis Associated with Probable Etiology
Hepatitis C Virus-Associated Cryoglobulinemic Vasculitis
Hepatitis B Virus-Associated Vasculitis
Syphilis-Associated Aortitis
Drug-Associated Immune Complex Vasculitis
Drug-Associated ANCA-Associated Vasculitis
Cancer-Associated Vasculitis

Others
Table 3: Definitions for Vasculitides Adopted by the 2011-2012 International Chapel Hill Consensus Conference Nomenclature of Vasculitides

(Note to Editor: This table should be placed entirely on one page)

<table>
<thead>
<tr>
<th>CHCC2012 Names</th>
<th>CHCC2012 Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large Vessel Vasculitis</td>
<td>Vasculitis affecting large arteries more often than other vasculitides.</td>
</tr>
<tr>
<td>(LVV)</td>
<td>Large arteries are the aorta and its major branches. Any size artery may be affected.</td>
</tr>
<tr>
<td>Takayasu Arteritis (TAK)</td>
<td>Arteritis, often granulomatous, predominantly affecting the aorta and/or its major branches. Onset usually in patients younger than 50.</td>
</tr>
<tr>
<td>Giant Cell Arteritis (GCA)</td>
<td>Arteritis, often granulomatous, usually affecting the aorta and/or its major branches, with a predilection for the branches of the carotid and vertebral arteries. Often involves the temporal artery. Onset usually in patients older than 50 and often associated with polymyalgia rheumatica.</td>
</tr>
<tr>
<td>Medium Vessel Vasculitis</td>
<td>Vasculitis predominantly affecting medium arteries defined as the main visceral arteries and their branches. Any size artery may be affected. Inflammatory aneurysms and stenoses are common.</td>
</tr>
<tr>
<td>Polyarteritis Nodosa</td>
<td>Necrotizing arteritis of medium or small arteries without</td>
</tr>
</tbody>
</table>
glomerulonephritis or vasculitis in arterioles, capillaries, or venules; and not associated with ANCA.

Kawasaki Disease
Arteritis associated with the mucocutaneous lymph node syndrome and predominantly affecting medium and small arteries. Coronary arteries are often involved. Aorta and large arteries may be involved. Usually occurs in infants and young children.

Small Vessel Vasculitis
Vasculitis predominantly affecting small vessels, defined as small intraparenchymal arteries, arterioles, capillaries and venules. Medium arteries and veins may be affected.

ANCA Associated Vasculitis (AAV)
Necrotizing vasculitis, with few or no immune deposits, predominantly affecting small vessels (i.e., capillaries, venules, arterioles and small arteries), associated with MPO-ANCA or PR3-ANCA. Not all patients have ANCA. Add a prefix indicating ANCA reactivity, e.g. PR3-ANCA, MPO-ANCA, ANCA-negative.

Microscopic Polyangiitis (MPA)
Necrotizing vasculitis, with few or no immune deposits, predominantly affecting small vessels (i.e., capillaries, venules, or arterioles). Necrotizing arteritis involving small and medium arteries may be present. Necrotizing glomerulonephritis is very common. Pulmonary capillaritis often occurs. Granulomatous inflammation is
absent.

Granulomatosis with Polyangiitis (Wegener’s) (GPA)
Necrotizing granulomatous inflammation usually involving the upper and lower respiratory tract, and necrotizing vasculitis affecting predominantly small to medium vessels (e.g., capillaries, venules, arterioles, arteries and veins). Necrotizing glomerulonephritis is common.

Eosinophilic Granulomatosis with Polyangiitis (Churg Strauss) (EGPA)
Eosinophil-rich and necrotizing granulomatous inflammation often involving the respiratory tract, and necrotizing vasculitis predominantly affecting small to medium vessels, and associated with asthma and eosinophilia. ANCA is more frequent when glomerulonephritis is present.

Immune Complex Vasculitis
Vasculitis with moderate to marked vessel wall deposits of immunoglobulin and/or complement components predominantly affecting small vessels (i.e., capillaries, venules, arterioles and small arteries). Glomerulonephritis is frequent.

Anti-GBM Disease
Vasculitis affecting glomerular capillaries, pulmonary capillaries, or both, with basement membrane deposition of anti-basement membrane autoantibodies. Lung involvement causes pulmonary hemorrhage, and renal involvement causes glomerulonephritis with
necrosis and crescents.

Cryoglobulinemic Vasculitis (CV)
Vasculitis with cryoglobulin immune deposits affecting small vessels (predominantly capillaries, venules, or arterioles) and associated with cryoglobulins in serum. Skin, glomeruli and peripheral nerves are often involved.

IgA Vasculitis (IgAV) (Henoch-Schönlein)
Vasculitis, with IgA1-dominant immune deposits, affecting small vessels (predominantly capillaries, venules, or arterioles). Often involves skin and gastrointestinal tract, and frequently causes arthritis. Glomerulonephritis indistinguishable from IgA nephropathy may occur.

Hypocomplementemic Urticarial Vasculitis (HUV) (Anti-C1q Vasculitis)
Vasculitis accompanied by urticaria and hypocomplementemia affecting small vessels (i.e., capillaries, venules, or arterioles), and associated with anti-C1q antibodies. Glomerulonephritis, arthritis, obstructive pulmonary disease, and ocular inflammation are common.
Variable Vessel Vasculitis (VVV)

Vasculitis with no predominant type of vessel involved that can affect vessels of any size (small, medium, and large) and type (arteries, veins, and capillaries).

Behçet's Disease (BD)

Vasculitis occurring in patients with Behçet's disease that can affect arteries or veins. Behçet's disease is characterized by recurrent oral and/or genital aphthous ulcers accompanied by cutaneous, ocular, articular, gastrointestinal, and/or central nervous system inflammatory lesions. Small vessel vasculitis, thromboangiitis, thrombosis, arteritis and arterial aneurysms may occur.

Cogan's Syndrome (CS)

Vasculitis occurring in patients with Cogan's syndrome. Cogan’s syndrome is characterized by ocular inflammatory lesions, including interstitial keratitis, uveitis, and episcleritis, and inner ear disease, including sensorineural hearing loss and vestibular dysfunction.

Vasculitic manifestations may include arteritis (affecting small, medium or large arteries), aortitis, aortic aneurysms, and aortic and mitral valvulitis.
Single Organ Vasculitis (SOV)

Vasculitis in arteries or veins of any size in a single organ that has no features that indicate that it is a limited expression of a systemic vasculitis. The involved organ and vessel type should be included in the name (e.g. cutaneous small vessel vasculitis, testicular arteritis, central nervous system vasculitis). Vasculitis distribution may be unifocal or multifocal (diffuse) within an organ. Some patients originally diagnosed with SOV will develop additional disease manifestations that warrant re-defining the case as one of the systemic vasculitides (e.g. cutaneous arteritis later becoming systemic polyarteritis nodosa, etc.).

Vasculitis Associated with Systemic Disease

Vasculitis that is associated with and may be secondary to (caused by) a systemic disease. The name (diagnosis) should have a prefix term specifying the systemic disease (e.g. rheumatoid vasculitis, lupus vasculitis, etc.).

Vasculitis Associated with Probable Etiology

Vasculitis that is associated with a probable specific etiology. The name (diagnosis) should have a prefix term specifying the association (e.g. hydralazine-associated microscopic polyangiitis, hepatitis B virus-associated vasculitis, hepatitis C virus-associated...
cryoglobulinemic vasculitis, etc.).
FIGURE LEGENDS

Figure 1: These drawings depict the types of vessels that are defined as large vessels, medium vessels or small vessels in the CHCC nomenclature system. The kidney is used to exemplify medium and small vessels. Large vessels are the aorta and its major branches and the analogous veins. Medium vessels are the main visceral arteries and veins and their initial branches. Small vessels are intra-parenchymal arteries, arterioles, capillaries, venules and veins.

Figure 2: This diagram illustrates the distribution of vessel involvement by large vessel vasculitis, medium vessel vasculitis and small vessel vasculitis. Note that there is substantial overlap with respect to arterial involvement and an important concept is that all three major categories of vasculitis can affect any size artery. Large vessel vasculitis affects large arteries more often than other vasculitides. Medium vessel vasculitis predominantly affects medium arteries. Small vessel vasculitis predominantly affects small vessels, but medium arteries and veins may be affected, although immune complex SVV rarely affects arteries. Not shown is variable vessel vasculitis, which can affect any type of vessel from aorta to veins. From left to right, the diagram depicts aorta, large artery, medium artery, small artery/arteriole, capillary, venule and vein.
Figure 1: These drawings depict the types of vessels that are defined as large vessels, medium vessels or small vessels in the CHCC nomenclature system. The kidney is used to exemplify medium and small vessels. Large vessels are the aorta and its major branches and the analogous veins. Medium vessels are the main visceral arteries and veins and their initial branches. Small vessels are intra-parenchymal arteries, arterioles, capillaries, venules and veins.
Figure 2: This diagram illustrates the distribution of vessel involvement by large vessel vasculitis, medium vessel vasculitis and small vessel vasculitis. Note that there is substantial overlap with respect to arterial involvement and an important concept is that all three major categories of vasculitis can affect any size artery. Large vessel vasculitis affects large arteries more often than other vasculitides. Medium vessel vasculitis predominantly affects medium arteries. Small vessel vasculitis predominantly affects small vessels, but medium arteries and veins may be affected, although immune complex SVV rarely affects arteries. Not shown is variable vessel vasculitis, which can affect any type of vessel from aorta to veins.

254x190mm (96 x 96 DPI)